CHROM. 11,954

Note

Determination of L-glutamine in preparations using high-performance liquid chromatography

NOBUSHIGE NISHIMOTO, YOKO MITANI and SHINICHI HAYASHI

Research and Development Division, Rohto Pharmaceutical Co., Ltd., No. 8-1, Tatsumi Nishi 1-chome, Ikuno-ku, Osaka (Japan)

(Received May 2nd, 1979)

L-Glutamine is an important medicine which has been used for the treatment of peptic ulcers, especially in Japan¹. The determination of L-glutamine has been carried out by means of, *e.g.*, ion-exchange chromatography²⁻⁹, gas chromatography¹⁰⁻¹³, fluorimetric methods^{14,15}, methods for measuring the amount of ammonia liberated by the actions of enzymes¹⁶⁻²¹ or acids^{22,23} on L-glutamine, and various other methods²⁴⁻²⁷. In this paper, the determination of L-glutamine in preparations using high-performance liquid chromatography is described.

EXPERIMENTAL

Reagents

0.02 M Potassium dihydrogen phosphate was prepared by weighing 2.72 g of potassium dihydrogen phosphate in sufficient water to make 1000 ml. 0.2 M Sodium hydroxide was prepared by weighing 0.8 g of sodium hydroxide in sufficient water to make 100 ml. Phosphate buffer solution was adjusted to pH 5.0 by mixing 0.02 M potassium dihydrogen phosphate and 0.2 M sodium hydroxide, filtered through a membrane filter (Toyo, TM-2, 0.45 μ m; Toyo Roshi, Tokyo, Japan) and used as a mobile phase after degassing. L-Glutamine (Ajinomoto, Tokyo, Japan) was dried at 80° for 3 h, *ca.* 50 mg accurately weighed and dissolved in sufficient water to make exactly 50 ml, and used as a standard solution. An amount of sample, equivalent to 30 mg of L-glutamine, was weighed accurately in a centrifuge tube with a stopper, 30 ml of water was added, it was shaken for 10 min, filtered through Toyo No. 5 filter paper 10 ml of first filtrate was removed, 5 ml of following clear filtrate was collected and used as a sample solution. All other reagents were commercially available products of analytical reagent grade.

Apparatus and procedure

The chromatograph consisted of an Altex pump (Model 110-A; Berkeley, Calif., U.S.A.) operated at a flow-rate of 0.8 ml/min. The column effluent was monitored by a Shimazu UV variable-wavelength detector (Model 202; Kyoto, Japan) with a 20- μ l flow-through cell. The detector was operated at 210 nm ($32 \cdot 10^{-2}$ a.u.f.s.). The column consisted of a stainless-steel tube ($25 \text{ cm} \times 4.6 \text{ mm I.D.}$) packed

NOTES

with Nucleosil 10 SB (Macherey, Nagel & Co., Düren, G.F.R.) by the balanced viscosity and dispersion slurry-packing technique. All experiments were carried out at room temperature. A $20-\mu$ l volume of standard or sample solution was injected accurately by using a syringe loading sample injector (Model 7120; Rheodyne, Berkeley, Calif., U.S.A.). The chromatogram was recorded at a chart speed of 5 mm/min. The L-glutamine content in the sample was calculated by peak height measurements relative to standard solutions.

RESULTS

Under these chromatographic conditions, L-glutamine was separated from nicotinic amide and calcium pantothenate; these have been prescribed frequently together (Fig. 1). L-Glutamine is not very stable in water, and decomposes forming pyrrolidonecarboxylic $acid^{28}$ or glutamic $acid^{29}$ by the action of moisture, and basic compounds, such as sodium bicarbonate, calcium carbonate, magnesium carbonate, magnesium oxide etc., in preparations stored for long periods of time. L-Glutamine was easily separated from these by-products (Fig. 2). The recovery of L-glutamine was 98.5% and the coefficient of variation was 0.98% for 5 analyses. These authors believe that this chromatographic method is very useful for the determination of L-glutamine in routine preparations, because the procedure is performed easily and rapidly.

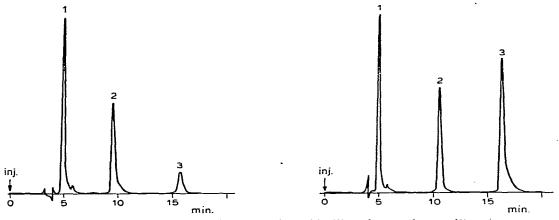


Fig. 1. Chromatogram of L-glutamine (1), nicotinic amide (2) and pantothenate (3). Fig. 2. Chromatogram of L-glutamine (1), pyrrolidonecarboxylic acid (3) and glutamic acid (2).

ACKNOWLEDGEMENT

We wish to thank Mr. Y. Yamada, president of the Rohto Pharmaceutical Co., Ltd., for granting us permission to publish this work.

REFERENCES

1 Japan Pharmaceutical Information Center, in M. Horioka, T. Saito, K. Takagi, M. Takasugi and N. Motohashi (Supervisors), *Drugs in Japan, Ethical Drug Edition*, Yakugyo Jiho, Tokyo, 1975, p. 192.

- 2 I. Oreskes, F. Cantor and S. Kupfer, Anal. Chem., 37 (1965) 1720.
- 3 H. Lorenz, J. Chromatogr., 27 (1967) 267.
- 4 T. L. Perry and S. Hansen, Clin. Chim. Acta, 25 (1969) 53.
- 5 A. Vega and P. B. Nunn, Anal. Biochem., 32 (1969) 446.
- 6 S. Tartarini, J. Pharm. Sci., 61 (1972) 960.
- 7 J. L. Young and M. Yamamoto, J. Chromatogr., 78 (1973) 349.
- 8 E. H. F. McGale and I. F. Pye, J. Chromatogr., 89 (1974) 350.
- 9 P. T. Ozand, R. L. Hawkins, R. M. jun. Collins, J. T. Tildon and M. Cornblath, Biochem. Med., 14 (1975) 170.
- 10 H. Hediger, R. L. Stevens, H. Brandenberger and K. Schmid, Biochem. J., 133 (1973) 551.
- 11 J. M. L. Mee and B. Halpern, Anal. Lett., 9 (1976) 605.
- 12 F. S. Collins and G. K. Summer, J. Chromatogr., 145 (1978) 456.
- 13 P. Hušek and V. Felt, J. Chromatogr., 152 (1978) 546.
- 14 S. R. Nahorski, Anal. Biochem., 42 (1971) 136.
- 15 R. E. Miller, Anal. Biochem., 75 (1976) 91.
- 16 F. L. Iber and J. Bruton, Clin. Chem., 2 (1956) 413.
- 17 M. E. A. Ramadan and D. M. Greenberg, Anal. Biochem., 6 (1963) 144.
- 18 H. G. Preuss, B. B. Bise and G. E. Schreiner, Clin. Chem., 12 (1966) 329.
- 19 M. Kikuchi, Anal. Biochem., 59 (1974) 83.
- 20 P. J. Buttery and E. V. Rowsell, Anal. Biochem., 39 (1971) 297.
- 21 D. Coony and R. Davis, Anal. Biochem., 40 (1971) 312.
- 22 T. P. Whitehead and S. R. F. Whittaker, J. Clin. Pathol., 8 (1955) 81.
- 23 P. R. Henderlong and R. R. Schmidt, Plant Physiol., 41 (1966) 1102.
- 24 E. M. Olsen, D. C. Hill and H. D. Branion, Can. J. Biochem. Physiol., 40 (1962) 381.
- 25 E. B. Robertson, B. D. Sykes and H. B. Dunford, Anal. Biochem., 9 (1964) 158.
- 26 H. Kluge, H. Hermann and V. Wieczorek, Z. Klin. Chem., 5 (1967) 86.
- 27 P. van der Harst, J. D. Baars and A. J. P. F. Lombarts, Clin. Chim. Acta., 50 (1974) 439.
- 28 H. B. Vickery, G. W. Pucher and H. E. Clark, Biochem. J., 29 (1935) 2710.
- 29 E. Schulze and G. Trier, Chem. Ber., 45 (1912) 257.